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GRADIENT NUMERICAL-ANALYTICAL METHOD FOR SOLUTION OF THE NAVIER-STOKES 

EQUATIONS FOR A VISCOUS INCOMPRESSIBLE FLUID 

A. A. Shmukin and R. A. Posudievskii UDC 532.5 

A method is presented for solution of the Navier-Stokes equations in an extremal 
formulation based on a joint application of Pontryagin's maximum principle and 
a representation of the unknown functions in the form of power series. 

The system of Navier-Stokes equations describing plane laminar motion of a viscous in- 
compressible fluid in velocity--pressure variables has the form 
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In solving the system (1)-(3), as a rule, one replaces the continuity equation by the 
Poisson equation for the pressure. It was noted in [i] that the main difficulty in this case 
consists in integrating the Poisson equation with Neumann type boundary conditions (as the bound- 
ary condition one uses an expression for projection of momentum on a wall). A part of the 
algorithms for solving the Navier-Stokes equations is connected with their integration in 
stream function-vorticity variables. Moreover, specific difficulties arise in calculation 
of the boundary conditions for the vorticity, which are not given from the physical condi- 
tions. We present below an iterational algorithm for solving Eqs. (1)-(3) which makes use 
of the natural boundary conditions and does not require integration of the Poisson equation. 

We introduce the functional 

t H 

0 r 

(4) 

By decomposing the region with the moving fluid into elementary regions bounded by lines 
joining nodes of a grid, we can replace the problem of finding the pressure from the condi- 
tion for a minimum of functional (4) for each elementary region by the solution of Eqs. (i), 
(2). As a result, along with the pressure we shall determine the velocity components. 
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As an example illustrating this algorithm, we consider the problem of determining the 
fluid flow parameters in a square cavity with an upper cover moving with constant velocity. 
Initial and boundary conditions in this case have the form: 

u(x, y, 9 = 0 ,  v(x, y, o ) = o ,  (5) 

u(O, y, O = u ( l ,  y, O = u ( x ,  O, 0 = 0 ,  u&, 1, t )=  I, (6) 

v(O, g, t ) = v ( 1 ,  g, O = v ( x ,  O, O = v ( x ,  1, 0 = 0 .  (7 )  

To i n t e g r a t e  Eqs. (1) ,  (2) wi th  c o n d i t i o n s  (5 ) - (7 )  wi th  a given p re s su re  f i e l d ,  we em- 
ploy the numerical-analytical method from [2], allowing us to reduce the solution of the 
initial-boundary problem to the integration of a system of ordinary differential equations 
(SODE) in Cauchy form. We decompose the region of fluid flow by means of a uniform grid x m = 
i/M(m - i), m = 2, M, ys = I/L(s - i), s = 2, L. In a neighborhood of each grid node (m, s 
we shall seek the velocity components and the pressure in the series form 
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Substituting Eqs. (8) into Eqs. 
the spatial variables, we obtain 
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(i), (2) and equating coefficients of identical powers of 
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We consider a computational scheme obtained from relations (9) and (i0) with n = I, 2, 
k = i, 2. To determine the values of u3 k, u4 k, k = i, 2 we use the equations 

4 
k , l  h , l  Un,m = Ul,m+l, ( i i )  

n=l 

4 
~ s l ' ~n - l , , h ,  l ~ U h , l  

~--,, , ~ n , m  1,m-1, ( 1 2 )  

whence 

~.l ! r u k , l  u~,~ l__.k,l " 
U3'rn'~- 2 t 1,rn-~-I + l,rn--l' --l,m' (13) 

h , l  ~ .1 h l k , l  k , l  U4'm 2 [Ul:m+l--Ul"m-ll--U~'m" (14) 

513 



In a similar way we find Un,m a,s " 4,s v 3,s v 4,s n = i 2 and v k,s , ~n,m , n,m , n,m , , , 3,m , 

V4,mk,s k = i, 2. Since initially the fluid is quiescent, the initial conditions for the 
SODE (9) and (i0) have the form 

h,l  Z)h I "0" un.m(0)=0,  . : m r ) = 0 ,  n 1, oo, k = ~  (15) 

Thus, f o r  a g iven p r e s s u r e  f i e l d ,  we can de te rmine  the  v e l o c i t y  components by i n t e g r a t i n g  the  
SODE (9 ) ,  (10) ,  t a k i n g  i n to  account  e x p r e s s i o n s  of  the  form (13) ,  (14) and the  i n i t i a l  condi -  
t i o n s  (15) .  We s u b s t i t u t e  Eqs. (8) i n to  r e l a t i o n  (4) and t ake  t he  i n t e g r a l  over  the  boundary 
of  the  r e g i o n  [Xm_ l ,  Xm+z] x [Y~-I ,  Y~+z] c o n t a i n i n g  the  node (m, s 
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Finally, we can formulate the stated problem in the following way: It is required to 
select the values of the components of the pressure function Pn,mk,s so that the SO com- 

ponents of the velocity vector will minimize the value of the functional 

t~ M L 
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To do this we use the Pontryagin maximum principle [3] and one of the gradient methods of 
optimization. We form the function 
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Consequently, with the fundamental controlling SODE (9) and (i0) we can associate the adjoint 
system 

h l  dUn:m _ _  OH 
k l  ' dt OUn',m 
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n =  1, 2, k =  1, 2, m = 2 ,  M, l = 2 ,  L, (19) 

- - ,  n = l ,  2, k = l ,  2, m=2, M, I = 2 ,  L. (20) 

Since no restrictions are imposed on the values of the velocity components at a finite 
time instant t = tK, the initial condition for the SODE (19), (20) is 

hl hl un:~(&)=o, G:~(&)= o. (21) 

To determine the maximum of function (18) with respect to Pn,mk,~(t) by a gradient method, we 
need expressions for calculation of the corresponding derivatives. In this case, they assume 
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the following form: 
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Fig. i. Distribution of horizon- 
tal velocity component at section 
x = 0.5. Labels i, 2, 3, and 4 
correspond to M = L values of 4, 
6, 8, and i0, respectively; points 
labelled 5 are the result of solv- 
ing the problem in stream function- 
vorticity variables. 

In organizing the iterational process for the search for a maximum, we employ the conju- 
gate gradient method, a method well-suited for the solution of inverse heat conduction prob- 
lems in an extremal formulation [4] where the values of the pressure components at the p-th 
iteration are determined from the expressions 

where 
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The step multiplier at each iteration is obtained from the condition 

% mindo hl }p__ SOh,l = [{P~:m s t  ~,m }P]- (26)  ~ o  

Based on the algorithm developed for solving the Navier-Stokes equations, we carried out 
calculations foc determining the velocity and pressure for the flow of a fluid in a square 
cavity with a uniformly moving upper cover, Re = i. In Pig. 1 we show, for the solution ob- 
tained, the resulting stationary distributions of the horizontal velocity component at the 
section x = 0.5 corresponding to calculations on uniform grids with various numbers of inter- 
nal nodes. As the grid becomes more dense the difference between corresponding results de- 
creases, and a comparison of the results computed on the least dense gridwork with the solu- 
tion of the same problem in the stream function-vorticity variables shows good agreement. On 
the whole, out calculations confirm the effectiveness of our approach to solving the Navier- 
Stokes equations, wherein use can be made of natural boundary conditions for the fluid veloc- 
ity and there is no need in determining the pressure to solve a Neumann problem for the Pois- 
son equation. 

NOTATION 

x, y, space coordinates; t, time; u~ v, horizontal and vertical components of velocity; 
P, pressure; Re, Reynolds number; F, boundary of region; Un, projection of velocity vector on 
normal to boundary of region; s, arc length of integration contour; tK, finite time instant; 
m, ~, number of grid nodes; M, L, parameters determining the number of nodes of a gridwork; 
n, k, power series indices; J0, minimizing functional; U, V, conjugate functions; ~, step 
multiplier of the conjugate gradient method; p, iteration number. 
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