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GRADIENT NUMERICAL-ANALYTICAL METHOD FOR SOLUTION OF THE NAVIER—STOKES
EQUATIONS FOR A VISCOUS INCOMPRESSIBLE FLUID

A. A. Shmukin and R. A. Posudievskii UDC 532.5
A method is presented for solution of the Navier—Stokes equations in an extremal

formulation based on a joint application of Pontryagin's maximum principle and
a representation of the unknown functions in the form of power series.

The system of Navier—Stokes equations describing plane laminar motion of a viscous in-
compressible fluid in velocity—pressure variables has the form
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In solving the system (1)-(3), as a rule, one replaces the continuity equation by the
Poisson equation for the pressure. It was noted in [1] that the main difficulty in this case
consists in integrating the Poisson equation with Neumann type boundary conditions (as the bound-
ary condition one uses an expression for projection of momentum on a wall). A part of the
algorithms for solving the Navier—Stokes equations is connected with their integration in
stream function-vorticity variables. Moreover, specific difficulties arise in calculation
of the boundary conditions for the vorticity, which are not given from the physical condi-
tions. We present below an iterational algorithm for solving Egqs. (1)-(3) which makes use
of the natural boundary conditions and does not require integration of the Poisson equation.

We introduce the functional

Iy

Jo = ds|? dt. (4)
f g

By decomposing the region with the moving fluid into elementary regions bounded by lines
joining nodes of a grid, we can replace the problem of finding the pressure from the condi-
tion for a minimum of functional (4) for each elementary region by the solution of Egs. (1),
(2). As a result, along with the pressure we shall determine the velocity components,
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As an example illustrating this algorithm, we consider the problem of determining the
fluid flow parameters in a square cavity with an upper cover moving with constant velocity.
Initial and boundary conditions in this case have the form:

u(x’ Y, 0)=0’ U(x, U, 0):0, (5)
u(0, y, h=u(l, y, H=u(x, 0, =0, u(x, 1, H=1, (6)
v(0, y, ) =v(l, g, h=uv(x, O, H=ov(x, I, =0. (7)

To integrate Eqs. (1), (2) with conditions (5)-(7) with a given pressure field, we em-
ploy the numerical-analytical method from [2], allowing us to reduce the solution of the
initial-boundary problem to the integration of a system of ordinary differential equations
(SODE) in Cauchy form. We decompose the region of fluid flow by means of a uniform grid x, =
1/M(m = 1), m=2, M, yp = 1/L(2 — 1), ¢ = 2, L. In a neighborhood of each grid node (m, %)
we shall seek the velocity components and the pressure in the series form
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Substituting Eqs. (8) into Egs. (1), (2) and equating coefficients of identical powers of
the spatial variables, we obtain
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We consider a computational scheme obtained from relations (9) and (10) with n = 1, 2,
k=1, 2. To determine the values of uak, uuk, k =1, 2 we use the equations

4
kI ,
Z Un,m = u{z,’ln_H’ (11)
n=]
: kI kI
2 (— 1" Ug'm = Ul'm—1, (12)
n=1
whence
k! 1 R, I il |yl '
Uy'm = 9 [ul,m-H + Im—1 —U (13)
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In a similar way we find up, s Uy, m” 2, Vn,m’ oL, Vn, a¥ n=1, 2, and Vs, m k.2,
v, mk,ﬁ, k=1, 2. Since 1n1t1ally the fluid is qulescent "the initial conditions for the
SODE (9) and (10) have the form

Uk (0) =0, v;’;ﬁ,,(())-o =1, o0, k=1, oo. (15)

Thus, for a given pressure field, we can determine the velocity components by integrating the
SODE (9), (10), taking into account expressions of the form (13), (14) and the initial condi-
tions (15). We substitute Eqs. (8) into relation (4) and take the integral over the boundary
of the region [xp-1, Xp+1] X [yg-1, Yg41] containing the node (m, 2):

tH
Jom = j [ih dt, (16)
]
where
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Finally, we can formulate the stated problem in the following way: It is required to
so select the values of the components of the pressure function Pn,mk »2(t), so that the com-
ponents of the velocity vector will minimize the value of the functional

:

To do this we use the Pontryagin maximum principle [3] and one of the gradient methods of
optimization. We form the function

K
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Consequently, with the fundamental controlling SODE (9) and (10) we can associate the adjoint
system

k1 - — —
d’i’;*m - ;Izl , on=1,2 k=12 m=2 M, (=9I (19)
Un,m .
k,1 —_
d‘;nt»m — aaIZl n=1, 2, k=1, 2, m=2, M, 1=2, L. (20)
Un.m

Since no restrictions are imposed on the values of the velocity components at a finite
time instant t = tg, the initial condition for the SODE (19), (20) is

Uik () =0, Vih(t)=0. (21)

To determine the maximum of function (18) with respect to Pn’mk’g(t) by a gradient method, we

need expressions for calculation of the corresponding derivatives. In this case, they assume
the following form:

o __n=l gt Bl vt ast 2 k= 12, (22)
OPpm  Xmt1— ¥m Yra— Yo
o0H 2 bl
= Usm, k=1, 2,
apg:ﬁn Xm+1— Xm " (23)
2
6H = Vnm’ n = 1’ 2. (24‘)
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In organizing the iterational process for the search for a maximum, we employ the conju-
gate gradient method, a method well-suited for the solution of inverse heat conduction prob-
lems in an extremal formulation [4] where the values of the pressure components at the p-th
iteration are determined from the expressions

{(Prm ) = {Pum) —op (Prm}"s p=0, 1, (25)
where
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The step multiplier at each iteration is obtained from the condition

, pp =

o B 1o R, \p
Op 1’;’1}11'10 Jo [{Pn,m} (Z{(I)n’m . (26)

Based on the algorithm developed for solving the Navier—Stokes equations, we carried out
calculations for determining the velocity and pressure for the flow of a fluid in a square
cavity with a uniformly moving upper cover, Re = 1. 1In Fig. 1 we show, for the solution ob-
tained, the resulting stationary distributions of the horizontal velocity component at the
section x = 0.5 corresponding to calculations on uniform grids with various numbers of inter-
nal nodes. As the grid becomes more dense the difference between corresponding results de-
creases, and a comparison of the results computed on the least dense gridwork with the solu-
tion of the same problem in the stream function-vorticity variables shows good agreement. On
the whole, our calculations confirm the effectiveness of our approach to solving the Navier—
Stokes equations, wherein use can be made of natural boundary conditions for the fluid veloc-
ity and there is no need in determining the pressure to solve a Neumann problem for the Pois-
son equation.

NOTATION

X, y, space coordinates; t, time; u, v, hotrizontal and vertical components of velocity;
P, pressure; Re, Reynolds number; I, boundary of region; u,, projection of velocity vector on
normal to boundary of region; s, arc length of integration contour; tg, finite time instant;
m, %, number of grid nodes; M, L, parameters determining the number of nodes of a gridwork;
n, k, power series indices; J,, minimizing functional; U, V, conjugate functions; a, step
multiplier of the conjugate gradient method; p, iteration number.
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